2018年5月19日 星期六

New Tech Could Turn Seaweed Into Biofuel

New Tech Could Turn Seaweed Into Biofuel


In the future, we may not look up to the sun for energy, but down into the ocean’s depths.
This month the U.S. Department of Energy announced an investment of nearly $1.5 million in projects to develop renewable energy from Hawaiian seaweed, following large investments in other parts of the nation in a new push toward the potentially groundbreaking development of seaweed-based biofuels.
The $1.5 million will go toward establishing two large-scale offshore seaweed farms for development and production of biofuels. Of this hefty sum, $995,978 goes to Honolulu’s Makai Ocean Engineering for the development of an ocean simulating model to facilitate offshore seaweed farm design, Kailua-Kona’s Kampachi Farms receives $500,000 to develop an offshore macroalgae farm and test out different seaweed harvesting methods in search of the most efficient model.
The recent investments in Hawaii are just one part of a recent energy trend toward biofuels. The DOE’s Advanced Research Projects Agency-Energy (ARPA-E) program is developing nationwide projects to establish a large-scale macroalgae agricultural industry under the under the Macroalgae Research Inspiring Novel Energy Resources (MARINER) program.
In Massachusetts, the Woods Hole Oceanographic Institution (WHOI) was awarded a whopping $5.7 million from ARPA-E to fund two projects to further advance mass cultivation of seaweed on an industrial scale. $3.7 million of this will go toward the development of a breeding program for sugar kelp (Saccharina latissima), utilizing cutting-edge gene sequencing and genomic resources for the most accurate and efficient selective breeding possible, resulting in a 20 to 30 percent improvement over wild plants. For this endeavor, WHOI will work in conjunction with  the University of Alaska Fairbanks, another MARINER project funding recipient that is currently developing scale model seaweed farms capable of producing sugar kelp for less than $100 per dry metric ton.
The other $2 million given to WHOI goes toward developing a self-sufficient underwater observation system to monitor these large-scale seaweed farms for long periods of time without human intervention. This revolutionary technology is being created by a team from the Applied Ocean Physics and Engineering department.

This huge push in funding and biofuel investments comes in the hope that seaweed could soon be used to power our homes and vehicles. According to ARPA-E, the U.S. could potentially produce 300 million dry metric tons of combined brown and red seaweed per year. Converted to biofuel, this yield could supply 10 percent of the nation’s annual transportation energy demand—a game-changing amount.
Up to this point, domestic cultivation of macroalgae has exclusively been for human consumption, and the majority of seaweed consumed by humans and animals in the U.S. is sourced from wild harvests or imported from other countries with seaweed-farming operations already underway. The ramping-up of local production isn’t just an amazing innovation for domestic biofuel sources, but it’s also a huge relief for wild seaweed beds being over-harvested for local consumption. The seaweed push would also create new jobs, boosting the economic health of many working waterfronts.
With the recent cash influx to create the necessary technology and infrastructure, seaweed—never before farmed in large scales in the U.S.—could quickly replace corn as the country’s primary source of biofuel. This would be a welcome change, as seaweed farms require none of the synthetic fertilizers, huge swaths of land and vast quantities of freshwater that corn cultivation needs.
Like oil and gas, biofuels are also generally composed of hydrocarbons, however, they’re ultimately much closer to the carbon-neutral line because they naturally consume carbon dioxide as they grow. Seaweed is especially efficient in this regard, as it grows significantly faster than terrestrial plants and is able to store large amounts of CO2 in its structure.
The underwater future of energy is well underway. Expect to see cleaner, greener, seaweed-based biofuels in the U.S. marketplace in the next few years.
By Haley Zaremba for Oilprice.com
-------------------------------------------------------------------------------

浅谈海藻生物柴油的研发状况

来源:中国新能源网 china-nengyuan.com   2017-01-19
  王克范  轉載自  http://www.china-nengyuan.com/tech/103832.html
(太原化学工业集团有限公司,山西太原030021)

摘要:叙述了美国、澳大利亚及中国从海藻中提取生物柴油的研发状况,指出,发展从海藻中提取生物柴油的未来发展可促进CO2的消化,实现碳封存、获得更多的副产品及培养更优质的藻类品种。
  0引言
  海洋里有5×10^4多种藻类,作为海洋植物的主体,在光合作用下迅速繁衍生息。海藻的繁殖力极强,1d就能繁殖新的一代,生长周期短、生物产量高,自身合成油脂能力强,含油率一般在20%~70%。从海藻中提取的油脂,成分与植物油相似,可作为生物柴油替代石油,用于工业和柴油发动机[1]。这对中国缺油、少气、多煤的能源结构调整以及能源安全的保证,都将发挥巨大的作用。
  海藻在光合作用下,需要CO2,每生产1t海藻生物柴油,可消耗7tCO2[2]。在发展海藻生物柴油的同时,还可减少大气中CO2的排放。可以说,海藻是1种优质的生物质能源。
  1美国从海藻中提取柴油的状况
  20世纪80年代,美国能源部在加州沿海建立了400×10^4km2的海底农场,专门种植多年生巨藻,以特殊船只3次/d采收水深2m以下的海藻,再通过天然细菌发酵或人工发酵,合成天然气(主要是CH4)。目前,其合成的天然气达6.23×10^8m3,不仅可满足5×10^4户家庭1a的需求,且单位成本仅为工业开采天然气成本的1/6左右[3]
  美国政府已确定,到2030年,美国运输燃料的30%用生物燃料替代。由于乙醇生物燃料是使用玉米提取的,这不仅会影响粮食安全生产,还会导致粮食价格的上涨。因此,在替代石油燃料的资源中,海藻处于领先地位。1978年至1996年,美国能源部为向海藻再生开发燃油的项目投资了2500×10^4美元。研究结果证实,由于海藻具有极强的生长能力,在单位面积及单位时间上,海藻所生产的油脂量高于陆生油料作物30倍;另外,还节省了陆生油料作物所消耗的淡水、肥料和大量的土地资源,因此,海藻生长成本比陆生植物低(全球石油俱乐部评估结果表明1hm2海藻能生产9.6×10^4L/a生物柴油,1hm2油椰子能生产6.0×10^4L/a生物柴油,1hm2大豆只能生产446L/a生物柴油)[1]
近年来,由于石油价格大幅上扬,美国政府和各大石油公司大力支持和资助从事海藻再生能源研究的机构,科学家又重聚海藻研究实验室和现场,使得利用海藻生产生物柴油取得了突破性进展,应用现代生物工程技术,已经开发出含油率超过60%的工程海藻,实现了海藻油脂的提取和生物柴油的制造,由实验室转向小规模工业化生产。美国能源部计划2010年实现微藻制备生物柴油工业化,到2015年,将生产成本降至0.53美元/L~0.63美元/L[2]
  2澳大利亚从海藻中提取柴油的状况
  2009年底,笔者有幸从澳大利亚墨尔本获得澳大利亚的“富基绿色新能源生物柴油(Fulifuelblodiesel)”项目的资料,从中得知,该项目进行了大量的藻类优良品种筛选工作,在5×10^4多种海藻中,最终精选出脂质含量高的3个优秀品种,a)微拟球藻(Nannochloropsis sp),其脂质含量为净重的31%~68%;b)裂殖壶菌(Schizochytrium sp),其硅藻脂含量为净重的50%~77%;c)布朗葡萄藻(Botryococcus braunii),其硅藻脂质含量为净重的25%~75%。这3种微藻中,以微拟球藻最优,因为其抗菌力强,生命力顽强;易于生养,培育简单,处理方便;咸水物种;高脂质含量(脂质达净重的70%)。资料中反映,澳大利亚富基绿色新能源生物柴油的生产系统,主要流程(见图1)。
项目在1000m2的实验现场中进行,设专人负责藻菌培育室、试验室以及用透明的很粗的塑料管构成的,呈闭合循环状的光合作用反应器。在实验中若发现某一段反应器存在异常,可立即进行切换处理,使闭合循环仍能继续进行。藻菌光合作用反应器管道与藻菌加入口、水的加入口、CO2通入口等连接着。藻类收获后,将其送至提炼设施,再通过脂类提炼或干制法进行浓缩,将提炼出的脂类转化成生物柴油和甘油。尽管相对于干制法,用于脂类提炼的湿制法成本和能耗低,但是干制法能产生包含浓缩脂类等的干物质,所有的付产品(蛋白质,碳)都会被再利用,产生出更高的附加值。若准备建厂,应选与热电厂距离近一些的地方,这样便于利用电厂烟道气中排除的CO2,通入光合反应器,使微拟球藻等得到足够的营养。
  所收集的资料中,附有由美国著名的FUJL Fuel Blo Dlesel公司,对澳大利亚富基绿色新能源生物柴油项目评估为可信赖等级的1份项目预算表(见表1),表1给出了预期效益的分析。


  澳大利亚的富基绿色新能源生物柴油项目的预期产量为160×10^4L/d,约合45×10^4t/a左右,需投资110×10^8元人民币,利润达22×10^8元/a人民币,投资回报率为19.87%,投资回收年限为5a。
  以建设200个基础农场为例,预期设计的含油量为净重等值的40%,生物柴油批发出厂价按1.05澳元计,脱脂湿生物质的计量按0.50澳元/kg(净重等值)计,所产油的预期含油量设为85%,可产出湿生物质10732379kg/d。按每头奶牛饲料消耗28kg/d计,可养殖奶牛383299头,占用土地2170hm2
  3中国从海藻中提取柴油的状况
  中国海藻生物能源研究,虽然起步较晚,但在微藻大规模培养方面走在世界前列。养殖的微藻种类包括螺旋藻、小球藻、栅藻,雨生红球藻等。中科院大连化学物理研究所等单位在产氢微藻,清华大学等单位在产油淡水微藻方面,都有一定的研究基础[3]。2008年10月,海南绿地微藻生物科技有限公司利用CO2养殖微藻,成功地转换成生物柴油,在其养殖试验基地收获的干藻粉含油率达28%~32%。2008年12月,河北新奥集团已经在光生物反应器,生物柴油制备等藻类生物质能源技术领域取得了10多项具有自主知识产权的成果。以海藻为原料,成功地进行了生物柴油和生物燃气的中试,予计3a~5a内,逐步实现藻类生物能源的产业化。2009年2月,中科院与中石化集团在联合召开的“海藻生物柴油成套技术”项目启动会上宣布,近期要完成小试研究,2015年前后实现户外中试装置研发,远期将建设1×10^4t级工业示范装置。2009年4月,上海市科委批准立项的上海交通大学生命科学技术学院海藻制油项目已取得小试阶段性成果[1]
  中科院海洋研究所获得了多株系油质含量在30%~40%的高产能藻株,微藻产油研究取得了重要成果。如,细胞密度达到20g/L,产油量7g/m2(是目前农业种子产量的2倍);雪藻能在1m2光照面积内生产35.3g/dAFDW(去灰分干重)。该生物量相当于46.4g植物种子量,是目前高产农田的11倍。中国海洋大学创建了海藻类种子资源库,已收集600余株海洋藻类种子资源,保有油脂含量接近70%的微藻品种。在山东无棣县实施的裂壶藻(油脂含量50%,DHA含量40%)养殖项目正在建设一期工程,在利用滩涂能源植物,如,碱篷、海滨锦葵、油葵及地油制造生物柴油方面取得了重大技术突破[3]
  2010年,广州、深圳、厦门先后出现的“年产3000t海藻生物柴油中试厂”项目,皆融资3000×10^4元,提出了两步法光生物反应器海藻生长系统设计方案,不但解决了光生物反应器中海藻生长和富集脂质的矛盾,而且解决了反应器用于工业化生产存在的问题[2]。中试厂项目内容包括从电厂烟道回收CO2、培养海藻、海藻收集、海藻油萃取、生物柴油制造以及甘油和藻渣付产品加工,可以达到的目标为,a)生产3000t海藻生物柴油,付产300t燃料油;2500t饲料;减排CO22.1×10^4t(也有的付产甘油产品);b)实现海藻生产极为迅速的工艺,24h内可增加1倍;3.5h可达到对数生长期。使多数海藻含油量保持在20%~50%,部分海藻(干物质量)的含油量提高到77%~80%;c)中试厂投产后,若达产1×10^4t,可获纯利2000×10^4元/a。中试总投资(估算)6.0×10^8元[2]
  4未来的发展
  4.1利用海藻生物消化CO2
  利用海藻吸收CO2是科学家正在重点研究的1个项目,日本的海洋学家在太平洋的洋面上铺设100张(每张边长为10km)正方形鱼网,利用这些鱼网作为海藻生长的场所。某些海藻,如,马尾藻等会在1a内长到10m长,其间,由于光合作用,吸收CO2,释放出O2
  这些海藻在被收成后可以转化成生化燃料等有用物质,同时,这些鱼网也成了大量浮游生物的寄生场所,成为鱼类产卵的好地方,也因此增加了鱼类资源。
  美国的Earthrise公司还在加利福尼亚州的浅海区域培殖蓝绿藻,这种水藻的蛋白质成分很高,营养价值丰富,是地球上最能有效吸收CO2,并释放出O2的植物。它所需要的高浓度CO2完全来自工厂所排放的废气。
  藻类物质在无氧环境中形成纯碳。碳作为有机肥料再用于未来的藻类培养。这种循环链能够实现碳封存的目的。
  4.2海藻生物柴油生产的付产品
  从海藻中提取生物柴油后,残留物富含蛋白质,能加工成动物和鱼类的饲料,食物和制药产品等多种付产品;藻类物质通过微生物消化,还能产生沼气,提供新的能源。
  4.3培养更优质的藻类品种
  通过调整藻类基因,使脂类及其他特定产品的产量最大化,转基因品种与自然生长品种相比,在回报方面具有潜在的优势。
  5结语
  微藻资源丰富,不会因收获而破坏生态系统,可大量培养而不占用耕地。它的光合作用效率高,生长周期短,单位面积年产量是粮食的几十倍乃至上百倍。
  微藻脂类含量在20%至70%,是陆地植物远远达不到的,不仅可生产生物柴油或乙醇,还有望成为生产H2的新原料。在使用秸秆生产乙醇汽油之后,利用微藻生产生物柴油则是现在最新的“绿色”燃油技术。
  参考文献:
  [1]刘永平.海藻生物燃料产业化开发的进展[J].中外能源,200914(9):31-38.
  [2]刘生.年产3000t海藻生物柴油中试厂项目[ED/OL].[2010-01-22].http://www.3d-vc.com/.

  [3]刘永平.年产3000t海藻生物柴油中试厂项目[ED/OL].[2010-01-22].http://www.3d-vc.com/.

------------------------------------------------------------------

藻類燃料的發展和前景

呂錫民(工研院能環所前研究員) http://scitechreports.blogspot.hk/2015/06/blog-post.html

最近幾年,產業部門對海藻燃料的興趣一直在增加,並且將其視為一種永續的再生能源。基本上,藻類可構成一種獨特的原料,因為它們具有高成分的脂質和醣類,因此,可以不同的製程,讓不同的藻株分別成功地產出生質柴油和乙醇。此外,生產藻類燃料顯示出低環境足跡和高能量效率,與傳統油料作物(例如,油棕樹)相比,例如微藻(microalgae)的藻類每單位面積可多產出10~100倍的油類,同時生長速度也比食物作物快20~30倍。在淡水、高品質土壤、肥料中,藻類的產量可能比不上傳統作物,但是如果在海上培育,藻類根本不需要任何土地資源。而且,藻類燃料生命週期屬碳中和循環,也就是說,藻類在生長期間所吸收的二氧化碳總量,剛好等於燃燒過程中的二氧化碳排放量,就長期政策觀點來看,藻類燃料剛好可同時解決土地、食物和能源此三種問題。

本文就經濟、環境和政策此三個論點,分析和討論藻類燃料的最新研究與發展,目的在於解決藻類燃料技術近期在經濟性與商業化的障礙,內容涵蓋多項科學和產業相關研究與實驗之結果,希望能為此領域提供廣泛的趨勢與模式前景。

生質燃料市場上的機會

在2013年,臺灣石油產品消費量為4697萬公秉油當量(KLOE),其中燃料使用占43.22%,石油需求的成長、極少量石油的自產、油價的多變性和油類燃燒的溫室氣體排放等問題是觸發臺灣發展生質燃料的主要政策面向。但是在最近幾年裡,來自食物作物(如玉米、大豆、油菜)的傳統生質燃料,卻在食物∕物料和燃料生產之間,面臨難以轉圜的市場窘境,尤其是在2011年到2012年間,全球發生一連串原本所未預期的乾旱氣候。因此,來自纖維素植物材料(如柳枝稷,芒草)或油料植物(痲瘋樹,油棕樹)等先進生質燃料,皆成為前景看好的生質燃料原料,如果依據它們的低環境足跡、高能源效率和正面性的社會衝擊。雖然具有這些正面指標,但是纖維素生質燃料,卻未如預期地,達到生產∕消費階段。其原因包括許多技術性和生產上的瓶頸,但是最重要的是,有若干前景更看好的新技術出現在生質燃料市場當中,其中最重要的就是「藻基燃料(algae-based fuel)」。

在最近藻基燃料的調查研究裡,所謂的「藻類(algae)」一般係指「微藻(microalgae)」,而目前用於生質燃料生產的主要原料――微藻――是直徑小於0.016吋的單細胞生物,其等種類同時包括藍藻(cyanobacteria)或藍綠藻(bluegreen algae),也就是說微藻結合了細菌和藻類的特性,也因而具有光合作用和束縛二氧化碳等生長和再製的雙重功能,單就這點,我們可以說微藻在正向性環境足跡上,具有非常高的潛力。雖然藍藻具有可能是神經毒性的、不利於人類健康、擾亂湖泊生態平衡,以及生物多樣性負面衝擊等諸多負面衝擊,但是藍藻同時也是用於生質燃料生產的一種有價值,且具高效率的原料。藻類的另一族群為「大型海藻(macroalgae)」或「海草(seaweed)」,目前海藻在若干國家,例如中國、日本和智利,近海養殖計畫中實驗性生質燃料生產過程當中並不十分順利。與微藻相比,不利於大型海藻的大規模生質燃料生產限制有:過於複雜的結構、緩慢的生長速度和低的油含量。

基本上,藻基燃料技術可稱作一市場上的創新技術,因為其可以不同的製程,讓不同的藻株分別成功地生產生質柴油和乙醇。此主因在於有些藻類含有豐富的油脂(例如微藻),有些藻類含有豐富的醣類(例如大型海藻),其中,油脂可用於生質柴油的生產,而醣類則可用於乙醇的生產。

目前,用於乙醇生產的最有效率藻株為馬尾藻(Sargassum)、龍鬚(Glacilaria)、小定鞭金藻(Prymnesium parvum)和眼蟲(Euglena gracilis),因為它們是藻株中,碳水合物含量最高者。基本上,在從藻類細胞中萃取油脂之後,含有碳水化合物和蛋白質的剩餘物質,再經過發酵過程,可轉換成醣類,以及最後的乙醇,而且萃取之後的藻類,於發酵過程中所釋放的二氧化碳,可當作更多藻類生長的食物。

可行性與限制性

請參考表一,在目前所有可供應市場當中,微藻是提供最高脂質,具有非常快速生長速度的生質燃料,假設有適宜的氣候條件。其中,產油率是玉米的300倍、大豆的130倍、痲瘋樹的30倍、油棕樹的10倍,如果以每年每公頃土地產量為基礎。此外,微藻生長速度是普通食物作物的20~30倍,同時具有1~10天的成長期,可在非常短期限內,收成好幾次。藻株脂質生產效率主要與溫度及陽光曝曬有關。據美國桑迪亞國家實驗室透漏,微藻最有利的生長環境為:年平均日照小時數≧2800,年每日平均溫度≧55℉,年平均無凍天數≧200。依據美國現有狀況,假設以光生物反應器(photobioreactor)培育微藻,下列各州所能得到的最高脂質產量分別為:夏威夷(22~27m3/ha)、南加州和亞利桑那州(20~24m3/ha)、新墨西哥和德州(18~22m3/ha)。但是,值得一提的是,由於品種眾多,適合藻類生長的溫度範圍也很廣泛。所以,依據不同的藻株、不同的區域可提供不同的最佳生長環境。另外,上述各州數據與表一中的微藻產油率小很多的主要原因為:前者是使用假設與限制甚多的電腦模擬結果,而後者是依據實際實驗所得的結果。


生產藻基燃料(乙醇和生質柴油)以及其衍生產品的過程是十分複雜的,並且可區分為若干階段,如圖一所示。依據不同的藻株、應用技術、成分和生物轉換過程,最終產品(燃料和副產品)的成本也可能因此不同。


依據現有技術製程,從藻類生產乙醇是不成問題的,但是,依據最終產品的不同,藻類原料卻是很有競爭性的。請參考表二,與低價藻基燃料相比,微藻和海藻(例如,卡拉膠、洋菜)所衍生的副產品,價值卻是很高的,所以,經濟層面和利益最佳化可能成為決定藻類原料的最終使用,同時,也是藻基燃料市場之長期發展的主要因素。


經濟、環境、社會和政策面向

因為具有下列特性,使得藻類生質物,在生質燃料生產上,比其他生質燃料更具有優勢。

(一)環境優勢
針對每公克生質物的產生,藻類可吸收兩公克的二氧化碳。所以,不像大部分的原料和作物,在生產生質物時排放二氧化碳,藻類在生產生質物時是吸收二氧化碳的。依據學者分析,一噸二氧化碳可轉換為60~70加侖的藻基乙醇,所以,就以原料生產此第一階段而言,藻類對於溫室氣體減量,具有相當大的貢獻,基本上,藻基燃料可說是碳中和的,也就是說,其燃燒時所排放的二氧化碳量,係等於成長期間所吸收的二氧化碳量。根據這個理由,藻基燃料是一種最能因應氣候變化的最有效之永續燃料,也是能夠長期符合全球需求的唯一再生能源。

況且,藻基燃料生產更具有另外的增強性正面效應,目前,由於玉米乙醇生產過程中的發酵作用,大型玉米乙醇廠公認為二氧化碳主要排放者,亦即,每蒲式耳的玉米會排放19磅的二氧化碳,若干產業將玉米乙醇生產時所排放的二氧化碳,當作藻基燃料生產的主要原料,依據他們的評估,1億加侖的玉米乙醇廠所排放的二氧化碳,足以製造140000噸的藻類,所以,藻類生產可以彌補玉米乙醇生產的負面效應,因而,創造額外的社會價值。

在美國,玉米乙醇的年產量高達140億加侖,這代表需要48億蒲式耳的玉米原料,同時,在此玉米的乙醇製造過程中,總共排放43.2百萬噸的二氧化碳。另外,槓桿效益同時也為藻類在生質燃料市場中,締造二氧化碳排放交易機制。一家藻類燃料研發公司「Algenol」預估他們公司的二氧化碳交易獲利為30美元∕公噸二氧化碳,甚至以約等於澳大利亞碳稅的25美元/公噸二氧化碳計算,光以碳稅收入,就足以在美國生產21百萬公噸的藻類,如果假設藻類的最低脂質含量為30%,則這些藻類將可生產16億加侖的再生能源柴油或生質柴油。

更重要的一點是,藻類養殖不會消耗農業作物生長所需要的水資源,除了普通水之外,藻類更可以廢水培育,如此更增加了此原料的環境永續性。

(二)經濟優勢
藻類具有廣泛的可應用性,除了燃料之外,尚可提供其他部門所需要的副產品,基本上,有三種成分可從一藻類生質物當中提煉出來:脂質(油類)、碳水化合物和蛋白質。脂質和碳水化合物可應用在燃料的生產,例如,汽油、生質柴油、航空燃料、可再生碳氫化合物、酒精、沼氣等等,而蛋白質則可使用在其他用途,例如,動物∕魚類飼料、肥料、工業酵素、生化塑膠、表面活性劑等等。兩種藻株(小球藻和衣藻)具有生產生質柴油4000~6000加侖/公畝/年的潛力,如果提供額外的技術輔助,則生產生質柴油潛力可增加至10000加侖/公畝/年。與傳統作物,例如,油棕樹――目前含油量最高的傳統生質燃料原料――比較,藻類在相同養殖面積下,可多產出10~100倍的燃料,其他低產油率的原料更不在話下。

藻基燃料的另一項經濟效益是,藻株可在普通水資源和嚴苛環境(例如,非耕地)下生長,所以,藻類不會影響到傳統作物,對乾淨水資源和高品質土壤的需求,同時也不像其他生質燃料原料,需要用到土地、水或肥料,才能生長。美國能源部評估,如果要取代美國所有傳統汽油,則需要用到15000平方哩的土地,方能培育和生長出足夠的藻類燃料原料,此用地面積僅占美國國土面積的0.42%,也相當於2000年玉米耕種面積的七分之一,如果考慮海上或近海養殖,則藻類生產根本用不到任何土地資源。

在散布和行銷上,藻基原料也具有本身獨特的技術優勢,首先,它們可當作傳統燃料(例如汽油、航空燃料和柴油)的添加物,其次,就像傳統汽油一般,藻類燃料可以既有的基礎設備或設施來加以提煉與分配,所以,不像其他先進生質燃料,例如,纖維素乙醇,藻類燃料技術可馬上被應用,不需要額外的基礎設施成本或任何其他燃料成本的增加。

(三)社會和政策優勢
基本上,藻類燃料是傳統油品市場(柴油和汽油)和生質燃料(生質柴油和玉米乙醇)的可行替代方案,除了不受乾旱氣候影響之外,藻類燃料所創造的契機,亦可避免類似玉米乙醇所遭遇的食物生產與燃料供應的兩難窘境。

基本上,生質燃料是一種自產能源,如果藻類燃料配合其他先進生質燃料技術,例如柳枝稷、芒草、地溝油等,做大規模的生質柴油和乙醇生產,則臺灣就不需要大量進口原油,油品市場也不會受到國際油價變動而影響到民生經濟,達到真正的能源自主,另外更能培育其他再生能源領域的研發。

不像玉米、甘蔗或其他食物作物,藻類原料不會受到食品市場價格波動的影響,因而,提供消費者較高的燃料價格穩定性。

除了上述經濟效益之外,藻類燃料的發展與應用亦能帶來不少的社會效益,以美國最近的狀況為例,一項在2013年新藻類燃料的商業化,總共替佛羅里達州西南部帶來數千個新就業市場,其中,在有政府獎勵補助措施下,該藻類燃料的售價為1美元/加侖,雖然目前生產成本與此售價相去甚遠,但是如果能更大規模擴大產銷市場,則將使生產成本快速下降,讓實際價格更具有競爭性。

實際限制

雖然藻類燃料具有上述經濟、環境和社會優勢,但是目前藻類燃料仍然無法大規模的商業化量產,主要原因在於過高的生產成本所致。藻類生產所牽涉的複雜製程一直是此項技術多年來發展的主要障礙,例如,藻類生物學、特定培育、收成、脫水、萃取、分餾、燃料和副產品等高困難度,且成本昂貴的轉換製程。雖然,目前經過美國若干私人企業的投資,各主要障礙大概已經克服,並且有供應至軍方使用的案例。然而,在缺乏大規模量產商業化下,居高不下的成本價格,藻類燃料價格始終無法與傳統汽油價格相競爭。

基本上,生產技術的應用,攸關藻基燃料的最後價格變動,目前一般常用到的藻基燃料生產技術有光生物反應器、開放水池型或混合式系統,有學者研究發現,如果使用光生物反應器,唯有當石油價格來到800美元/桶天價時,其產出的藻類燃料價格方能與汽油價格具競爭性,另外,美國能源部預估在大量生產下,藻類燃料的價格可下降到8美元/加侖,約為大豆生質燃料的一倍,雖然目前相關的成本研究報告很多,但是其一般的結論皆認為藻基燃料價格有逐漸下降的趨勢,在過去30年當中,藻基燃料價格已由1982年的6.09美元/加侖,下降到1996年的2.41美元/加侖,這也證明了,由於技術的演進,將使得藻基燃料對傳統燃料越來越具有競爭性。

如圖二所示,在由美國Algenol所研發的「直接乙醇製造」方法裡,乙醇直接由藍藻製造,免除人工的收成和脫水程序,大幅降低乙醇生產成本。製程當中,藍藻培養在一低成本的可撓性塑膠薄膜光生物反應器當中,首先系統利用藍藻的光合作用,從二氧化碳和鹹水中產生丙酮酸(糖類),然後在細胞內自行進行發酵作用,以產生乙醇。



結論

在過去十年裡,產學界早將藻類視為一前途看好的生質燃料原料,但是由於大規模基礎設施與生產技術的欠缺,以及所引發的高單價成本,一直是阻礙該項技術快速發展的主要障礙。基本上,與其他生質燃料原料相比,藻類燃料具有較佳的環境指數與能源效率,更重要的是不會引發食物短缺危機,也不需要耗費土地與水利資源,這也是為什麼產學界持續進行藻類燃料生產技術之研發與改良的主要原因。

藻基燃料商業化的主要障礙在於高生產成本,但是最近發展的重要指標,是要將藻類燃料的加油站價格降至1.00~1.70美元/加侖。

由於產業部門的一致努力,若干技術已經推陳出新,準備加速藻類燃料生產技術的快速發展,其中最主要的創新機制是生產過程中輸入能源的減少,例如,在所謂的「擠奶藻類(milking algae)」裡,一改以前的依次收成和處理的間斷製程,藻類油品能夠被連續地產出;其他,亦有利用基因工程,增加藻類成長或細胞中脂質的生產;還有一種具有專利的乙醇直接生產法「direct-to-ethano®」能夠不須經過收成和脫水階段,直接從藍藻中生產乙醇,如圖二所示。最後是「混合式離岸系統」,除了具有風力和太陽能發電作用之外,尚且結合藻類的生產。

依據產業界對藻類技術在最近幾年的樂觀發展經驗看來,此類原料具有令人看好的未來,但是,要讓藻基燃料成為普遍使用的產品,除了研發與政策要加把勁之外,就如同其他新興能源的發展一般,也需要其他客觀因素予以推波助瀾,例如,高漲的油價與嚴苛的環境政策。

臺灣的海岸線,如果包含離島,總共有1566公里,加上西部海域屬於淺海,適合發展上述的藻類生質能。尤其是,臺灣近年來全力發展陸上人工漁業養殖,此利於近海藻類養殖的開發,此除了可確保臺灣能源自主與減碳政策之外,煉油剩下的殘渣亦可作成畜牧的養殖飼料,是一種具有多功能的能源開發與養殖事業。


延伸閱讀
1. Quinn, J. et al., Current large-scale US biofuel potential from microalgae cultivated in photobioreactors, Bioenergy Research, Vol.5: 49-60, 2012.
2. US DOE, National algal biofuels technology roadmap, Washington, 2010.
3. Ziolkowska, J. R. and Simon, L., Recent developments and prospects for algae-based fuels in the US, Renewable and Sustainable Energy Reviews, Vol. 29: 847-853, 2014.

沒有留言:

張貼留言